РАБОЧАЯ ПРОГРАММА

учебного курса «Введение в химию» 7 классы

Пояснительная записка

Рабочая программа учебного курса разработана на основе программы пропедевтического курса химии для 7 класса основной школы «Химия.Вводный курс. 7 класс» авторов О. С. Габриеляна, И. Г. Остроумова и А. К. Ахлебинина (Программа пропедевтического курса «Химия. Вводный курс. 7 класс»/ О. С. Габриелян, И. Г. Остроумов, А. К. Ахлебинин . - М.: Дрофа, 2007г.),

Изучение вводного курса химии в 7 классе направлено на достижение следующих целей:

- подготовить учащихся к изучению нового учебного предмета;
- создать познавательную мотивацию к изучению нового предмета;
- сформировать предметные знания, умения и навыки (в первую очередь расчетные и экспериментальные), на которые недостаточно времени при изучении курса химии основной школы;
 - показать яркие, занимательные, эмоционально насыщенные эпизоды становления и развития науки химии;
 - интегрировать знания по предметам естественного цикла основной школы на основе учебной дисциплины «Химия».

Курс пропедевтики не предусмотрен федеральным базисным учебным планом, поэтому в программе отсутствуют сведения курса химии, предусмотренного федеральным компонентом государственного образовательного стандарта по химии для основной школы.

Курс (состоит из четырех частей) решает следующие задачи:

Первая тема — «Химия в центре естествознания» —

- 1. позволяет актуализировать химические знания учащихся, полученные на уроках природоведения, биологии, географии, физики, что уменьшит психологическую нагрузку на учащихся с появлением нового предмета.
- 2. способствует формированию идеи об интегрирующей роли химии в системе естест-венных наук, значимости этого предмета для успешного освоения естественнонаучных дисциплин.

Вторая тема — «Математика в химии» —

1. позволяет совершенствовать умения, необходимые при решении химических задач: умение вычислять часть от целого (массовая доля элемента в сложном веществе, массовая и объемная доли компонентов в смеси, в том числе и доля примесей).

Третья тема — «Явления, происходящие с веществами» —

1. дополняет сведения учащихся об известных им физических и химических явлениях.

Четвертая тема — «Рассказы по химии» —

1. способствует формированию научных представлений об ученых-химиках, удивительном мире химии, открытиях, реакциях и веществах.

Химия — наука экспериментальная. Поэтому в 7 классе рассматриваются такие важнейшие методологические понятия, как «эксперимент», «наблюдение», «измерение», «описание», «моделирование», «гипотеза», «вывод».

Для формирования экспериментальных умений учащихся в программе предусмотрены несложные по технике выполнения эксперименты, лабораторные опыты и практические работы. Также этой цели способствует предусмотренный в курсе домашний эксперимент, который полностью соответствует требованиям техники безопасности и обеспечивает ушедшие из практики обучения химии экспериментальные работы лонгетюдного (продолжительного по времени) характера.

Изучение предлагаемого курса предусматривает широкое использование активных форм и методов обучения: повышение роли самостоятельной работы учащихся в обучении (например, проведение домашнего химического эксперимента), в том числе подготовка сообщений для ученических конференций, защита проектов, обсуждение результатов домашнего эксперимента.

Рабочая программа предусматривает развитие таких логических операций мышления, как анализ и синтез, сравнение и обобщение, выдвижение и подтверждение или опровержение гипотез и т. д. Выполнение практической части рабочей программы предусмотрено в следующем объеме:

Виды деятельности		Кол-во работ				
Практические работы		6				
J	Контрольные рабо	ты			2	2

Программа построена на основе межпредметных связей, прежде всего, с курсом физики, биологии, географии, математики.

Рабочая программа ориентирована на использование УМК:

- Габриелян О. С., Остроумов И. Г., Ахлебинин А. К. «Химия. Вводный курс. 7 класс»- учебное пособие для учащихся. М.: Дрофа, 2010 г.
- Габриелян О.С., Шипарева Г.А. Химия: Методическое пособие к пропедевтическому курсу «Химия. Вводный курс. 7 класс». М.: Дрофа, 2010 г. (программа, тематическое планирование, рекомендации).
- Габриелян О.С., Шипарева Г.А. Химия. Рабочая тетрадь. 7 класс. М.: Дрофа, 2010 г.
- Габриелян О.С., Аксёнова И.В.. Практикум к учебному пособию О.С. Габриеляна и др. «Химия. Вводный курс. 7 класс», М.: Дрофа, 2010 г.

Контроль за результатами обучения осуществляется через использование следующих методов: текущий, итоговый.

При этом используются различные формы контроля: практическая работа, самостоятельная работа, тест, устный опрос, письменная контрольная работа, защита проекта и др.

Текущий контроль осуществляется с помощью собеседования, тестирования, наблюдения в ходепрактических работ.

Тематический контроль осуществляется по завершении темы в форме контрольного тестирования или письменной контрольной работы.

Итоговый контроль знаний учащихся предполагает собеседование или тестирование (дифференцированное) по основным вопросам изученного материала.

Согласно утвержденному Учебному плану школы на изучение пропедевтического курса химии отведен 1 час в неделю, поэтому рабочая программа разработана на 34 учебных часов в год. В рабочую программу внесено следующее изменение - добавлен 1 час на изучение курса в конце года в виде заключительного занятия для подведения итогов года, так как авторская программа рассчитана на 34 часа, а при изучении материала 1 час в неделю общее число часов должно составлять 35 часов. Распределение времени, а также темы занятий и экспериментальных работ полностью сохранены согласно авторской программе.

Рабочая программа предусматривает формирование у учащихся 7 класса общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций.

Основное содержание программы по химии 7 класс (1 час в неделю)

Глава I. Химия в центре естествознания (11часов) Химия как часть естествознания. Предмет химии Химия — часть естествознания. Взаимоотношения человека и окружающего мира. Предмет химии. Физические тела и вещества. Свойства веществ. Применение веществ на основе их свойств.

Наблюдение и эксперимент как методы изучения естествознания и химии

Наблюдение как основной метод познания окружающего мира. Условия проведения наблюдения. Гипотеза. Эксперимент. Вывод. Строение пламени. Лаборатория и оборудование.

Моделирование

Модель, моделирование. Особенности моделирования в географии, физике, биологии. Модели в биологии. Муляжи. Модели в физике. Электрофорная машина. Географические модели. Химические модели: предметные (модели атома, молекул, химических и промышленных производств), знаковые, или символьные (символы элементов, формулы веществ, уравнения реакций).

Химические знаки и формулы

Химический элемент. Химические знаки. Их обозначение, произношение. Химические формулы веществ. Простые и сложные вещества. Индексы и коэффициенты. Качественный и количественный состав вещества.

Химия и физика

Универсальный характер положений молекулярно-кинетической теории. Понятия «атом», «молекула», ион». Строение вещества. Кристаллическое состояние вещества. Кристаллические решетки твердых веществ. Диффузия. Броуновское движение. Вещества молекулярного и немолекулярного строения.

Агрегатные состояния веществ

Понятие об агрегатном состоянии вещества. Физические и химические явления. Газообразные, жидкие и твердые вещества. Аморфные вещества.

Химия и география

("троение Земли: ядро, мантия, кора. Литосфера. Минералы и горные породы. Магматические и осадочные (неорганические и органические, в том числе и горючие) породы.

Химия и биология

Химический состав живой клетки: неорганические (вода и минеральные соли) и органические (белки, жиры, углеводы, витамины) вещества. Биологическая роль воды в живой клетке. Фотосинтез. Хлорофилл. Биологическое значение жиров, белков, эфирных масел, углеводов и витаминов для жизнедеятельности организмов.

Качественные реакции в химии

Качественные реакции. Распознавание веществ с помощью качественных реакций. Аналитический сигнал. Определяемое вещество и реактив на него.

ДЕМОНСТРАЦИИ

- Коллекция различных предметов или фотографий предметов из алюминия для иллюстрации идеи «свойства применение».
- Учебное оборудование, используемое на уроках физики, биологии, географии и химии.
- Электрофорная машина в действии. Географические модели (глобус, карта). Биологические модели (муляжи органов и систем органов растений, животных и человека). Физические и химические модели атомов, молекул веществ и кристаллических решеток.
- Объемные и шаростержневые модели воды, углекислого и сернистого газов, метана.
- Образцы твердых веществ кристаллического строения. Модели кристаллических решеток.
- Вода в трех агрегатных состояниях. Коллекция кристаллических и аморфных веществ и изделий из них.
- Коллекция минералов (лазурит, корунд, халькопирит, флюорит, галит).
- Коллекция горных пород (гранит, различные формы кальцита мел, мрамор, известняк).
- Коллекция горючих ископаемых (нефть, каменный уголь, сланцы, торф).

ДЕМОНСТРАЦИОННЫЕ ЭКСПЕРИМЕНТЫ

- Научное наблюдение и его описание. Изучение строения пламени.
- Спиртовая экстракция хлорофилла из зеленых листьев растений.
- «Переливание» углекислого газа в стакан на уравновещенных весах.

• Качественная реакция на кислород. Качественная реакция на углекислый газ.

ЛАБОРАТОРНЫЕ ОПЫТЫ

- Распространение запаха одеколона, духов или дезодоранта как процесс диффузии.
- Наблюдение броуновского движения частичек черной туши под микроскопом.
- Диффузия перманганата калия в желатине.
- Обнаружение эфирных масел в апельсиновой корочке.
- Изучение гранита с помощью увеличительного стекла.
- Определение содержания воды в растении.
- Обнаружение масла в семенах подсолнечника и грецкого ореха.
- Обнаружение крахмала в пшеничной муке.
- Взаимодействие аскорбиновой кислоты с иодом (определение витамина С в различных соках).
- Продувание выдыхаемого воздуха через известковую воду
- •Обнаружение известковой воды среди различных веществ.

ДОМАШНИЕ ОПЫТЫ

- Изготовление моделей молекул химических веществ из Пластилина.
- Диффузия сахара в воде.
- Опыты с пустой закрытой пластиковой бутылкой.
- Обнаружение крахмала в продуктах питания; яблоках.

ПРАКТИЧЕСКАЯ РАБОТА № 1

Знакомство с лабораторным оборудованием. Правила техники безопасности.

ПРАКТИЧЕСКАЯ РАБОТА № 2

Наблюдение за горящей свечой. Устройство и работа спиртовки.

Глава II. Математика в химии (9 часов)

Относительные атомная и молекулярная массы

Относительная атомная масса элемента. Молекулярная масса. Определение относительной атомной массы химических элементов по таблице Д. И. Менделеева. Нахождение относительной молекулярной мас-сы по формуле вещества как суммы относительных атомных масс, составляющих вещество химических элементов.

Массовая доля элемента в сложном веществе

Понятие о массовой доле химического элемента (w) в сложном веществе и ее расчет по формуле вещества. Нахождение формулы вещества по значениям массовых долей образующих его элементов (для двухчасового изучения курса).

Чистые вещества и смеси

Чистые вещества. Смеси. Гетерогенные и гомогенные смеси. Газообразные (воздух, природный газ), жидкие (нефть), твердые смеси (горные породы, кулинарные смеси и синтетические моющие средства).

Объемная доля газа в смеси

Определение объемной доли газа (ф) в смеси. Состав атмосферного воздуха и природного газа. Расчет объема доли газа в смеси по его объему, и наоборот.

Массовая доля вещества в растворе Массовая доля вещества (u>) в растворе. Концентрация. Растворитель и растворенное вещество. Расчет массы растворенного вещества по массе раствора и массовой доле растворенного вещества.

Массовая доля примесей

Понятие о чистом веществе и примеси. Массовая доля примеси (w) в образце исходного вещества. Основное вещество. Расчет массы основного вещества по массе вещества, содержащего определенную массовую долю примесей.

ДЕМОНСТРАЦИИ

- Коллекция различных видов мрамора и изделий (или иллюстраций изделий) из него.
- Смесь речного и сахарного песка и их разделение.

- Коллекция нефти и нефтепродуктов.
- Коллекция бытовых смесей (кулинарных смесей, СМС, шампуней, напитков и др.).
- Диаграмма состава атмосферного воздуха. Диаграмма состава природного газа.
- Коллекция «Минералы и горные породы» (образцы веществ и материалов, содержащих определенную долю примесей).

ДОМАШНИЕ ОПЫТЫ

• Изучение состава некоторых бытовых и фармацевтических препаратов, содержащих определенную долю примесей.

ПРАКТИЧЕСКАЯ РАБОТА № 3

Приготовление раствора с заданной массовой долей растворенного вещества.

Глава ІІІ. Явления, происходящиес веществами (11 часов)

Разделение смесей

Способы разделения смесей и очистка веществ. Некоторые простейшие способы разделения смесей: просеивание, разделение смесей порошков железа и серы, отстаивание, декантация, центрифугирование, разделение с помощью делительной воронки, фильтрование. Фильтрование в лаборатории, быту и па производстве. Понятие о фильтрате. Адсорбция. Понятие об адсорбции и адсорбентах. Активированный уголь как важнейший адсорбент. Устройство противогаза.

Дистилляция, или перегонка

Дистилляция (перегонка) как процесс выделения вещества из жидкой смеси. Дистиллированная вода и области ее применения.

Кристаллизация или выпаривание. Кристаллизация и выпаривание в лаборатории (кристаллизаторы и фарфоровые чашки для выпаривания) и природе.

Перегонка нефти. Нефтепродукты. Фракционная перегонка жидкого воздуха.

Химические реакции. Условия протекания и прекращения химических реакций

Химические реакции как процесс превращения одних веществ в другие. Условия протекания и прекращения химических реакций. Соприкосновение (контакт) веществ, нагревание. Катализатор. Ингибитор. Управление реакциями горения.

Признаки химических реакций

Признаки химических реакций: изменение цвета, образование осадка, растворение полученного осадки, выделение газа, появление запаха, выделение или поглощение теплоты.

ДЕМОНСТРАЦИИ

- Фильтр Шотта. Воронка Бюхнера. Установка для фильтрования под вакуумом.
- Респираторные маски и марлевые повязки.
- Противогаз и его устройство.
- Коллекция «Нефть и нефтепродукты».

ДЕМОНСТРАЦИОННЫЕ ЭКСПЕРИМЕНТЫ

- Разделение смеси порошка серы и железных опилок.
- Разделение смеси порошка серы и песка.
 - Разделение смеси воды и растительного масла с помощью делительной воронки.
- Получение дистиллированной воды с помощью лабораторной установки для перегонки жидкостей.
- Разделение смеси перманганата и дихромата калия способом кристаллизации.
- Взаимодействие железных опилок и порошка серы при нагревании.
- Получение углекислого газа взаимодействием мрамора с кислотой и обнаружение его с помощью известковой воды.
 - «Каталитическое разложение пероксида водорода (катализатор -диоксид марганца (IV)).
- Обнаружение раствора щелочи с помощью индикатора.
- Взаимодействие раствора перманганата калия и раствора дихромата калия с раствором сульфита натрия.
- Взаимодействие раствора перманганата калия с аскорбиновой кислотой.

- Взаимодействие хлорида железа с желтой кровяной солью и гидроксидом натрия.
- Взаимодействие гидроксида железа (III) с раствором соляной кислоты.

ЛАБОРАТОРНЫЕ ОПЫТЫ

- Адсорбция кукурузными палочками паров пахучих веществ.
- Изучение устройства зажигалки и пламени.

ДОМАШНИЕ ОПЫТЫ

- Разделение смеси сухого молока и речного песка.
- Отстаивание взвеси порошка для чистки посуды в воде и ее декантация.
- Адсорбция активированным углем красящих веществ пепси-колы.
- Растворение в воде таблетки аспирина УПСА.
- * Приготовление известковой воды и опыты с ней.
 - Изучение состава СМС.

ПРАКТИЧЕСКАЯ РАБОТА № 4

Выращивание кристаллов соли (домашний эксперимент).

ПРАКТИЧЕСКАЯ РАБОТА № 5

Очистка поваренной соли.

ПРАКТИЧЕСКАЯ РАБОТА № 6

Изучение процесса коррозии железа (домашний эксперимент).

Глава IV. Рассказы по химии (4часа)

Ученическая конференция

◆Выдающиеся русские ученые-химики». О жизни и деятельности М. В. Ломоносова, Д. И. Менделеева, А. М. Бутлерова, других отечественных и зарубежных ученых (по выбору учащихся).

Конкурс сообщений учащихся

♦Мое любимое химическое вещество». Об открытии, получении и значении выбранного химического вещества.

Конкурс ученических проектов (Посвящен изучению химических реакций)

Практические работы

- 1) Практическая работа №1. Знакомство с лабораторным оборудованием. Правила техники безопасности. Габриелян О.С. «Химия. Вводный курс. 7 класс»: учебное пособие для общеобразовательных учреждений. М.: Дрофа, 2010, стр.14.
- 2) Практическая работа №2. Наблюдения за горящей свечой. Устройство и работа спиртовки. Габриелян О.С. «Химия. Вводный курс. 7 класс»: учебное пособие для общеобразовательных учреждений. М.: Дрофа, 2010, стр.
- 3) Практическая работа №3. Приготовление раствора с заданной массовой долей растворённого вещества. Габриелян О.С. «Химия. Вводный курс. 7 класс»: учебное пособие для общеобразовательных учреждений. М.: Дрофа, 2010, стр.77.
- 4) Практическая работа №4. Выращивание кристаллов соли (домашний эксперимент). Габриелян О.С. «Химия. Вводный курс. 7 класс»: учебное пособие для общеобразовательных учреждений. М.: Дрофа, 2010, стр.
- 5) Практическая работа №5. Очистка поваренной соли. Габриелян О.С. «Химия. Вводный курс. 7 класс»: учебное пособие для общеобразовательных учреждений. М.: Дрофа, 2010, стр.96.

6) Практическая работа №6. Изучение процесса коррозии железа (домашний эксперимент). «Химия. Вводный курс. 7 класс»: учебное пособие для общеобразовательных учреждений. – М.: Дрофа, 2010, стр.

Особенности преподавания предмета в 7 классе

В рабочую программу внесено следующее изменение - добавлен 1 час на изучение курса в конце года в виде заключительного занятия для подведения итогов года, так как авторская программа рассчитана на 34 часа, а при изучении материала 1 час в неделю общее число часов должно составлять 35 часов.

Планируемые результаты

В результате изучения пропедевтического курса химии ученик должен

знать /понимать:

- химическую символику: знаки некоторых химических элементов, формулы химических веществ и уравнения химических реакций;
- важнейшие химические понятия: химия, химические методы изучения, химический элемент, атом, ион, молекула, относительные атомная и молекулярная массы, минерал, вещество, классификация веществ, химическая реакция, коррозия, катализаторы, ингибиторы, фильтрование, дистилляция, адсорбция; органическая и неорганическая химия; углеводороды, спирты, карбоновые кислоты, жиры, углеводы, белки, качественные реакции;
- *основные законы химии:* сохранения массы веществ, постоянства состава вещества, периодический закон:
- важнейшие вещества и материалы: некоторые металлы и сплавы, серная, соляная, азотная и уксусная кислоты, щелочи, аммиак, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, известковая вода, СМС;

уметь:

- *называть* отдельные химические элементы, их соединения; соединения неметаллов и металлов, изученные органические соединения и другие вещества по тривиальной или международной номенклатуре;
- определять принадлежность веществ к определенным классам неорганических веществ;
- *характеризовать* элементы малых периодов по их положению в периодической системе Д. И. Менделеева; общие свойства металлов, неметаллов, основных классов неорганических и органических соединений;
- объяснять зависимость свойств веществ от их состава и строения, зависимость скорости химической реакции от различных факторов;
- выполнять химический эксперимент по распознаванию некоторых веществ; расчеты по нахождению доли вещества в растворе, элемента в веществе;
- *проводить* самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, интернет-ресурсов);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни с целью:

• объяснения химических явлений, происходящих в природе, быту и на производстве;

- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- экологически грамотного поведения в окружающей среде;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- приготовления растворов заданной концентрации в быту.

<u>Тематическое планирование по химии, 7 класс,</u> (1 час в неделю, всего 35 часов) УМК О.С. Габриеляна

№	Тема раздела	Количество часов					
		По программе О. С. Габриеляна	По рабочей программе	К.р.	П.р.		
1	Химия в центре естествознания.	11	11	-	П/р №1, П/р №2		
2	Математика в химии.	9	9	K/p №1	П/р №3		
3	Явления, происходящие с веществами.	11	11	K/p №2	П/р №4, П/р №5, П/р №6		
4	Рассказы по химии.	3	4	-	-		
	Итого:	34	35	K/p – 2	П/р — 6		